Przejdź do głównej treści

Widok zawartości stron Widok zawartości stron

Pomiń baner

Widok zawartości stron Widok zawartości stron

Head of the PhD study programme:

dr hab. Piotr Rozpądek, Prof. UJ
phone: +48 12 664 6108
e-mail: piotr.rozpadek@uj.edu.pl

PhD Student Administration Office:

mgr Magdalena Pisarczyk
phone: +48 453 672 171
magdalena.pisarczyk@uj.edu.pl

 

Limits of places
[regular recruitment] 2023/24:

1st round (June/July):

MCB: 1
JCET: 2
Solaris: 2

2nd round (September):

MCB: 3
JCET: 0
Solaris: 1

3rd round (October/November):

MCB: 2
JCET: 0
Solaris: 0

Admission:

Admission rules
Admission rules [PL version]
Required documents

Required documents [PL version]
Schedule

Apply via: Online Application System

Past calls:

List of past calls

Widok zawartości stron Widok zawartości stron

>>PhD study programme in Biomedical Sciences<< v. 22/23  [eight-terms]
>>PhD study programme in Biomedical Sciences << v. 22/23 [six-terms]

List of potential PhD advisors [MCB]

PhD Programme in Biomedical Sciences is a programme at the Doctoral School of Exact and Natural Sciences the Jagiellonian University in Krakow with a strong inter-disciplinary, international inter-sectoral research and training dimension.

We will recruit early stage researchers (ESRs) in an open call, targeting the most talented and motivated ESRs in the fields of Biological and Medical Sciences. The recruitment process will adhere to the guidelines set in the code of conduct for the recruitment of researchers and the European charter for researchers, ensuring transparency of the recruitment process based on the merit and skills of applicants. The recruitment process will not discriminate applicants based on their personal features.
Training will be focused on the interest and expertise of researchers working at the Malopolska Centre of Biotechnology (MCB), Jagiellonian Centre for Experimental Therapeutics (JCET) and National Synchrotron Radiation Centre (SOLARIS).
The program covers various areas of biology:

  • synthetic,
  • structural,
  • molecular,
  • cellular,
  • developmental

and utilizes plants, viruses, bacteria, invertebrates and vertebrates.
The program is also linked to interdisciplinary studies in endothelial biomedicine. 

Our Students offered a place in our PhD programme will obtain a full scholarship funded by the Polish government regardless of nationality.
The applicants are free to choose the research topic and supervisors from the focus areas based on their personal interests and qualifications. We encourage our students to get involved in the broad range of scientific activities of MCB, JCET and Solaris research groups. It is also an excellent opportunity to learn to think across disciplines and build up initial collaborations and cross-disciplinary skill sets.
The programme is run in English, either in a six-semester or in an eight-semester system.
During their studies, our students are expected to attend training courses in transferable and general research skills, participate in the students' and outreach activities, present their work regularly and attend seminars.

Widok zawartości stron Widok zawartości stron

High pressure studies of the structure of selected proteins in crystal and solution (dr inż. Joanna Sławek)
/or/
Development of GI-SAXS stage for SOLCRYS beamline and studies of model lipid-metal (dr inż. Tomasz Kołodziej)
(Supervisor: prof. dr hab. Maciej Kozak)

High pressure studies of the structure of selected proteins in crystal and solution (dr inż. Joanna Sławek) <br />/or/ <br />Development of GI-SAXS stage for SOLCRYS beamline and studies of model lipid-metal (dr inż. Tomasz Kołodziej) <br />(Supervisor: prof. dr hab. Maciej Kozak)

To make the application process fast and easy, please follow the rules. Remember to send your application to: biomedical.phd@uj.edu.pl and magdalena.pisarczyk@uj.edu.pl

 

Project description:

The stability of the 3D structure of proteins under extreme conditions (high pressures, high temperatures, extreme pH or ionic strength values, etc.) is still one of the current problems in fundamental research. The stability of the structure of protein complexes, oligomeric or monomeric proteins at high pressures is also of great importance in their industrial use. On the other hand, understanding the processes related to local structural disorder (e.g. changes in secondary structure) as well as long-range changes (dissociation of oligomeric structures or even complete unfolding of the tertiary structure) induced by pressure is important for understanding these phenomena in a broader (fundamental) context. It is particularly interesting to link these changes, induced by high pressure, with ranges of enzymatic activity or mechanisms of the misfolding of protein structures associated with neurodegenerative diseases (eg. human cystatin C or human prion protein). The aim of this project is to investigate the influence of high pressure (even up to 2 GPa) on the spatial structure of model proteins. 

Polecamy również
Aging-associated, specific pathomechanisms of endothelial dysfunction in sepsis: pathway analysis and experimental therapy (Supervisor: Prof. dr hab. Stefan Chłopicki)

Aging-associated, specific pathomechanisms of endothelial dysfunction in sepsis: pathway analysis and experimental therapy (Supervisor: Prof. dr hab. Stefan Chłopicki)

Aging-associated, specific pathomechanisms of endothelial dysfunction in sepsis: pathway analysis and experimental therapy (Supervisor: Prof. dr hab. Stefan Chłopicki)

Aging-associated, specific pathomechanisms of endothelial dysfunction in sepsis: pathway analysis and experimental therapy (Supervisor: Prof. dr hab. Stefan Chłopicki)

Aging-associated, specific pathomechanisms of endothelial dysfunction in sepsis: pathway analysis and experimental therapy (Supervisor: Prof. dr hab. Stefan Chłopicki)

Aging-associated, specific pathomechanisms of endothelial dysfunction in sepsis: pathway analysis and experimental therapy (Supervisor: Prof. dr hab. Stefan Chłopicki)

Identification and characterization of novel players in HIV-1 RNA nuclear processing and export to dissect post-transcriptional blocks in latency (Project Manager: dr Anna Kula-Pǎcurar)

Identification and characterization of novel players in HIV-1 RNA nuclear processing and export to dissect post-transcriptional blocks in latency (Project Manager: dr Anna Kula-Pǎcurar)