Przejdź do głównej treści

Widok zawartości stron Widok zawartości stron

Zapraszamy na Konwersatoria Szkoły 4 i 25 czerwca!

Uprzejmie informujemy, że ostatnie w tym roku akademickim Konwersatoria Szkoły odbędą się 4 i 25 czerwca. Ze względu na bezpieczeństwo, obydwa spotkania będą prowadzone zdalnie poprzez aplikację TEAMS. 

Konwersatoria odbywają się na Wydziale Matematyki i Informatyki w pokoju 1093 o godz. 16:30. Prowadzone są w języku angielskim. Więcej informacji nt. konkretnego wykładu po kliknięciu podlinkowanego tytułu:

17.10.2019 — Dr. Sebastian Szybka: Diagrammatic Notation
28.11.2019 — Prof. Jarosław Grytczuk: Primes, Fractals, and Contemporary Music
19.12.2019 — Prof. Andrzej Kotarba: Application of microorganisms for nanomaterials synthesis
23.01.2020 — Prof. Elżbieta Kołaczkowska: Catch me if you can: on variety of ways neutrophils can kill pathogens
27.02.2020 — Prof. Karol Życzkowski: An Introduction to Quantum Information
26.03.2020 — Prof. Paweł Strzelecki: An example of geometric analysis at work: the Poincare Conjecture and Perelman's proof odwołane!
23.04.2020 — Prof. Wojciech Grygiel — odwołane!
Prof. Michał Ostrowski – terminy i tematy
Monika Król – sprawy administracyjne

Widok zawartości stron Widok zawartości stron

An example of geometric analysis at work: the Poincare Conjecture and Perelman's proof by Prof. Paweł Strzelecki

I shall present one of the most famous mathematical stories of early 21st century. Between November 2002 and April 2003 Grigori Yakovlevich Perelman, a Russian geometer working in the St. Petersburg section of the Steklov Mathematical Institute has published three preprints, announcing (among other things) the proof of Poincare's Conjecture, a famous problem in topology, which had been open for roughly 100 years. His solution was very surprising and unexpected for the majority of mathematicians: he used the so-called geometric flows and methods of mathematical analysis that did not belong to the standard toolbox of topology. In 2006, he was granted the Fields medal, and in 2010 - a million dollar prize of the Clay Mathematics Institute. He accepted neither of the two. I do believe that his reason to refuse those prizes was his own understanding of the meaning of honesty in science: what it is and how should one go about it.

It is interesting to notice that methods of solving various differential equations similar to those considered by Perelman are used also in some very specific and very concrete applications of mathematics, e.g. to clear photographs from random noise. This can be treated as evidence that the frontier between theoretical and applied mathematics is, in the best case, pretty fluent.